31 research outputs found

    Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED based Visible Light Communications

    Get PDF
    In this paper we experimentally demonstrate, for the first time, staggered carrier-less amplitude and phase (sCAP) modulation for visible light communication systems based on polymer light-emitting diodes emitting at ~639 nm. The key advantage offered by sCAP in comparison to conventional multiband CAP is its full use of the available spectrum. In this work, we compare sCAP, which utilises four orthogonal filters to generate the signal, with a conventional 4-band multi-CAP system and on-off keying (OOK). We transmit each modulation format with equal energy and present a record un-coded transmission speed of ~6 Mb/s. This represents gains of 25% and 65% over the achievable rate using 4-CAP and OOK, respectively.Comment: 6 pages, 9 figures, IEEE ICC 2019 conferenc

    Structural engineering of pyrrolo[3,4-: F] benzotriazole-5,7(2 H,6 H)-dione-based polymers for non-fullerene organic solar cells with an efficiency over 12%

    Get PDF
    In this work, we have synthesized two wide band gap donor polymers based on benzo[1,2-b:4,5-b′]dithiophene (BDT) and pyrrolo[3,4-f]benzotriazole-5,7(2H,6H)-dione (TzBI), namely, PBDT-TzBI and PBDT-F-TzBI and studied their photovoltaic properties by blending them with ITIC as an acceptor. Polymer solar cell devices made from PBDT-TzBI:ITIC and PBDT-F-TzBI:ITIC exhibited power conversion efficiencies (PCEs) of 9.22% and 11.02% and while annealing at 160 \ub0C, improved the device performances to 10.24% and 11.98%, respectively. Upon solvent annealing with diphenyl ether (DPE) (0.5%) and chlorobenzene (CB), the PCE of the PBDT-F-TzBI-based device increased to 12.12%. The introduction of the fluorinated benzodithiophene (BDT-F) moiety on the backbone of PBDT-F-TzBI improved the open circuit voltage, short circuit current and fill factor simultaneously. The high PCEs of the PBDT-F-TzBI:ITIC-based devices were supported by comparison and analysis of the optical and electronic properties, the charge carrier mobilities, exciton dissociation probabilities, and charge recombination behaviors of the devices

    A porphyrin pentamer as a bright emitter for NIR OLEDs

    Full text link
    The luminescence and electroluminescence of an ethyne-linked zinc(ii) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (λ > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs

    A porphyrin pentamer as a bright emitter for NIR OLEDs

    Get PDF
    The Luminescence and electroluminescence of an ethyne-Linked zinc(II) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (lambda > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs

    Polymer Acceptors with Flexible Spacers Afford Efficient and Mechanically Robust All-Polymer Solar Cells

    Get PDF
    High efficiency and mechanical robustness are both crucial for the practical applications of all-polymer solar cells (all-PSCs) in stretchable and wearable electronics. In this regard, a series of new polymer acceptors (PAs) is reported by incorporating a flexible conjugation-break spacer (FCBS) to achieve highly efficient and mechanically robust all-PSCs. Incorporation of FCBS affords the effective modulation of the crystallinity and pre-aggregation of the PAs, and achieves the optimal blend morphology with polymer donor (PD), increasing both the photovoltaic and mechanical properties of all-PSCs. In particular, an all-PSC based on PYTS-0.3 PA incorporated with 30% FCBS and PBDB-T PD demonstrates a high power conversion efficiency (PCE) of 14.68% and excellent mechanical stretchability with a crack onset strain (COS) of 21.64% and toughness of 3.86\ua0MJ m-3, which is significantly superior to those of devices with the PA without the FCBS (PYTS-0.0, PCE = 13.01%, and toughness = 2.70\ua0MJ m-3). To date, this COS is the highest value reported for PSCs with PCEs of over 8% without any insulating additives. These results reveal that the introduction of FCBS into the conjugated backbone is a highly feasible strategy to simultaneously improve the PCE and stretchability of PSCs

    Using Two Compatible Donor Polymers Boosts the Efficiency of Ternary Organic Solar Cells to 17.7%

    Get PDF
    The use of ternary organic semiconducting blends is recognized as an effective strategy to boost the performance of polymer solar cells (PSCs) by increasing the photocurrent while minimizing voltage losses. Yet, the scarcity of suitable donors with a deep highest occupied molecular orbital (HOMO) level poses a challenge in extending this strategy to ternary systems based on two polymers. Here, we address this challenge by the synthesis of a new donor polymer (PM7-Si), which is akin to the well-known PM6 but has a deeper HOMO level. PM7-Si is utilized as the third component to enhance the performance of the best-in-class binary system of PM6:BTP-eC9, leading to simultaneous improvements in the efficiency (17.7%), open-circuit voltage (0.864 V), and fill factor (77.6%). These decisively enhanced features are attributed to the efficient carrier transport, improved stacking order, and morphology. Our results highlight the use of two polymer donors as a promising strategy toward high-performance ternary PSCs

    In Situ Study the Dynamics of Blade-Coated All-Polymer Bulk Heterojunction Formation and Impact on Photovoltaic Performance of Solar Cells

    Get PDF
    All-polymer solar cells (all-PSCs) have achieved impressive progress by employing acceptors polymerized from well performing small-molecule non-fullerene acceptors. Herein, the device performance and morphology evolution in blade-coated all-PSCs based on PBDBT:PF5–Y5 blends prepared from two different solvents, chlorobenzene (CB), and ortho-xylene (o-XY) are studied. The absorption spectra in CB solution indicate more ordered conformation for PF5–Y5. The drying process of PBDBT:PF5–Y5 blends is monitored by in situ multifunctional spectroscopy and the final film morphology is characterized with ex situ techniques. Finer-mixed donor/acceptor nanostructures are obtained in CB-cast film than that in o-XY-cast ones, corresponding to more efficient charge generation in the solar cells. More importantly, the conformation of polymers in solution determines the overall film morphology and the device performance. The relatively more ordered structure in CB-cast films is beneficial for charge transport and reduced non-radiative energy loss. Therefore, to achieve high-performance all-PSCs with small energy loss, it is crucial to gain favorable aggregation in the initial stage in solution

    Over 18% ternary polymer solar cells enabled by a terpolymer as the third component

    Get PDF
    “Ternary blending” and “random terpolymerization” strategies have both proven effective for enhancing the performance of organic solar cells (OSCs). However, reports on the combination of the two strategies remain rare. Here, a terpolymer PM6-Si30 was constructed by inserting chlorine and alkylsilyl-substituted benzodithiophene (BDT) unit (0.3 equivalent) into the state-of-the-art polymer PM6. The terpolymer exhibitsadeep highest-occupied-molecular-orbital energy and good miscibility with both PM6 and BTP-eC9 (C9) and enables its use as a third component into PM6:PM6-Si30:C9 bulk-heterojunction for OSCs. The resulting cells exhibit maximum power conversion efficiency (PCE) of 18.27%, which is higher than that obtained for the optimized control binary PM6:C9-based OSC (17.38%). The enhanced performance of the PM6:PM6-Si30:C9 cells is attributed to improved charge transport, favorable molecular arrangement, reduced energy loss and suppressed bimolecular recombination. The work demonstrates the potential of random terpolymer as a third component in OSCs and highlights a new strategy for the construction of a ternary system with improved photovoltaic performance

    On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18 %

    Get PDF
    The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive “conformational lock” mechanism, arising from the intensified intramolecular π–π interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs

    Recent Advances in n-Type Polymers for All-Polymer Solar Cells

    No full text
    \ua9 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim All-polymer solar cells (all-PSCs) based on n- and p-type polymers have emerged as promising alternatives to fullerene-based solar cells due to their unique advantages such as good chemical and electronic adjustability, and better thermal and photochemical stabilities. Rapid advances have been made in the development of n-type polymers consisting of various electron acceptor units for all-PSCs. So far, more than 200 n-type polymer acceptors have been reported. In the last seven years, the power conversion efficiency (PCE) of all-PSCs rapidly increased and has now surpassed 10%, meaning they are approaching the performance of state-of-the-art solar cells using fullerene derivatives as acceptors. This review discusses the design criteria, synthesis, and structure–property relationships of n-type polymers that have been used in all-PSCs. Additionally, it highlights the recent progress toward photovoltaic performance enhancement of binary, ternary, and tandem all-PSCs. Finally, the challenges and prospects for further development of all-PSCs are briefly considered
    corecore